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Abstract

Dielectric resonators are widely used as components of microwave resonant cavities with extremely high Q factors. To design a
temperature-compensated resonator it is necessary to know accurately the value of �", the temperature coefficient of the dielectric
constant. A simple and accurate procedure is described to measure this quantity. Furthermore, the paper discusses uncertainties

involved in the use of another quantity, �f, which is nowadays supplied by the manufacturers of dielectric resonators to characterize
the temperature variation of dielectric resonators. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Microwave resonators are often built with the use of
dielectric resonators to achieve a narrow-band, low-loss
operation. For applications in wireless communication
networks, the close spacing of individual channels requires
a very stable resonant frequency, ideally invariant with
the ambient temperature. The temperature stability of
the resonant frequency is often required to be under one
part per million, per degree centigrade (1 ppm/�C).
Two main mechanisms cause the resonant frequency

to vary with temperature. First, dimensions Li of the
various parts constituting the resonator expand with
temperature T. This is described by a linear temperature
expansion coefficient �i of the i-th part:

�i ¼
1

Li

�Li

�T

����
T¼T0

ð1Þ

As the resonator dimensions are proportional to the
resonant wavelength, the resonant frequency will typi-
cally decrease with increasing dimensions.
Second, the dielectric constant "r (permittivity) of the

dielectric resonator also changes with temperature T.
The linear term of this variation is the temperature
coefficient of the dielectric constant, �":

�" ¼
1

"r

�"r

�T

����
T¼T0

ð2Þ

Most dielectrics used to manufacture dielectric reso-
nators exhibit a decrease in "r with an increase in tem-
perature, so that �" is a negative number. Since the
resonant frequency is typically proportional to "r

�1/2, the
decrease in "r causes an increase of resonant frequency
with temperature. Thus, it is possible to design a com-
posite resonant cavity, consisting of several dielectric and
conductive parts, so that the frequency increments com-
pensate each other and the overall frequency variation at
room temperature T0 becomes stationary. To achieve a
resonator stability better than 1 ppm/�C, the designer
must know the values of �"’s with an accuracy of 1–2%.
Unfortunately, the typical data1 on �" are inaccurate by
8–25%.
The goal of this paper is to describe the measurement

procedure which enables an accurate determination of
�". Furthermore, the paper analyzes the common prac-
tice of measuring the frequency temperature coefficient
�f, and points out inadequacies of this procedure.

2. Courtney method of �" measurement

This measurement procedure consists of inserting a
cylindrical sample of the dielectric material to be mea-
sured between two parallel conducting plates, as shown
in Fig. 1. To determine the value of the dielectric con-
stant "r of the material, it is necessary to measure the
resonant frequency of the resonant mode TE011, which
typically occurs at microwave frequencies. Thus, to
determine the value of �" the entire device must be placed
in a temperature chamber, and the resonant frequency
must be measured as a function of temperature, as done
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by Courtney.2 He has observed that, in a range of tem-
peratures 0–100 �C,most of the dielectric materials exhibit
a linear change of "r with temperature. The value of �" is
then obtained from the slope of this variation. Courtney’s
contribution was significant in that he has performed an
analysis of systematic errors, and established the uncer-
tainty limits of the procedure. His paper does not contain
representative data on �" of typical dielectric resonators,
because these devices were not commercially available at
that time. A more recent contribution to the subject of
measuring �" of dielectric resonators is by Mourachkine
and Barel.3

From the historical perspective, the parallel plate
configuration from Fig. 1 was first suggested by Hakki
and Coleman.4 The same configuration was analyzed by
Cohn andKelly5 who have shown that the accuracy of the
results is not affected by the presence of the small but
unavoidable gaps between the resonator sample and the
two ground planes. Kobayashi and Katoh6 have analyzed
how much the parallel plates should extend beyond the
resonator diameter for a reliable measurement. As long as
height h is smaller than one-half wavelength in free space,
the radiation from the TE011 mode is insignificant, and
the size of the parallel plates has little effect on the mea-
sured results. In addition to measuring the TE011 mode,
several higher modes of the type TE0n1 (with n=1 to 4)
can also be used7 for the measurement of "r.
One difficulty in performing the measurement is the

fact that the parallel-plate resonator in Fig. 1 supports
many resonant modes so that before one starts taking the
data he should be sure that the measured mode is TE011.
One simple check is to touch the edges of the open-ended
resonator. For the unwanted modes, the display of the
network analyzer will show a change in the depth of the
resonant curve and also a shift in the resonant fre-
quency, while modes TE0n1 will remain unaffected by
such a small disturbance.
Once the resonant frequency f0 of the TE0n1 mode has

been found, the computation of "r can be done on a
personal computer as follows. First, compute the radial
wave number:

k0a ¼
2�f0a

c
ð3Þ

where c is the velocity of light in vacuum. Next, com-
pute the argument y of the modified Bessel functions:

y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

a

h

� �2
� k0að Þ

2

r
ð4Þ

Also, compute another auxiliary constant M:

M ¼
K1ðyÞ

yK0ðyÞ
ð5Þ

Then, find a zero of the transcendental function �(x):

�ðxÞ ¼ J1ðxÞ þ xMJ0ðxÞ ¼ 0 ð6Þ

Function �(x) is finite and well behaved as shown in
Fig. 2. Any primitive numerical procedure for solving lin-
ear equations should have no problems finding zeros of
the function. The first zero corresponds to mode TE011.
Higher zeros, corresponding to modes TE0n1, may be of
interest when "r is to be measured in a wider frequency
range with a single sample.7 Once the value of xn is
found, the relative dielectric constant is computed from:

"r ¼

x2n þ ð�
a

h
Þ
2

ðk0aÞ
2

ð7Þ

When the results of measurement in the temperature
chamber are being processed, one has to take into
account that dimensions a and h both change with tem-
perature. For instance, the value of a at temperature T
should be corrected to

aðTÞ ¼ aðT0Þ 1þ ðT � T0Þ�ð Þ ð8Þ

and similarly for h(T). The results of this computation
provide the values of function "r(T) and the value of �"

Fig. 1. Parallel-plate resonator used in Courtney’s measurement.

Fig. 2. First four zeros of function �(x).
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is then evaluated from the slope of this function at T0. A
synthesized signal generator is preferred, because the
frequency changes to be measured are extremely small.
The program qzero

8 was found to be useful in deter-
mining the exact value of the resonant frequency at each
temperature.

3. Present practices

Although Courtney’s measurement procedure is
straightforward and very accurate, the major manu-
facturers of dielectric resonators have adopted a different
experimental technique for characterizing the tempera-
ture variation of the dielectric material. They routinely
specify the frequency temperature coefficient �f of the
cylindrical conductor cavity which contains the dielec-
tric resonator at its center. This coefficient is defined as
follows:

�f ¼
1

f

�f

�T
ð9Þ

and is expressed in ppm/�C.
Fig. 3 shows the basic dimensions of such a test cav-

ity. The cavity radius and height are approximately
three times larger than the dielectric resonator’s radius
and height. A dielectric support keeps the dielectric
resonator situated at the center of the cavity. The value
of �f is measured by placing the entire cavity inside a
temperature chamber that allows a controlled tempera-
ture variation. The resonant frequency of mode TE01d is
then measured as a function of temperature and from
the slope of that function one computes �f.

If the users of dielectric resonators would design their
filters and oscillators by placing dielectric resonators
inside the three-times larger conductor cavities, made of
the samemetal as the manufacturer’s test cavities, then the
value of �f would indeed accurately predict the tempera-
ture behavior of their devices. In practical life, miniatur-
ization and low-cost requirements prohibit the use of such
large cavities. Furthermore, many filters utilize a hybrid
mode HEM11d instead of TE01d in order to create a dual
resonance. In short, the value of �f provided by manu-
facturers is not applicable to any practical configurations.
The proper quantity to use for a systematic design of

the temperature-compensated resonator is �" and not �f.
Manufacturer’s publications and catalogs suggest that
�" can be computed from the knowledge of �f and � as
follows:

�" ¼ �2 �þ �f

� �
ð10Þ

The above equation holds exactly only for the resonant
cavities homogeneously filled with the same dielectric
material1. For composite resonators such as in Fig. 3,
the variation of frequency with temperature is described
by a linear model as follows:9

�f ¼
X3
i¼1

ðCai þ ChiÞ�i þ
X2
j¼1

C"j�"j ð11Þ

The above equation contains two summations: the first
one describes the frequency changes due to the expansion
of mechanical parts and the second one describes the
frequency variation due to changes of dielectric constant
with temperature. Index i identifies parts with various
expansion coefficients �i. The resonator shown in Fig. 3,
consists of three parts: dielectric resonator (i=1 or p for
‘‘puck’’), dielectric support (i=2 or s for ‘‘support’’)
and conductor cavity (i=3 or c for ‘‘conductor’’).
Coefficients Cai and Chi are the sensitivity coefficients

of the resonant frequency with respect to dimensions ai

and hi:

Cai ¼
ai

f

�f

�ai
; Chi ¼

hi

f

�f

�hi
ð12Þ

Index j in the second summation identifies the dielec-
tric parts with various dielectric temperature coefficients:
puck (j=1 orp) and support (j=2 or s). The third dielec-
tric material in the cavity is air, but it is assumed that the
dielectric constant of air is unity regardless of tempera-
ture, so its �" is zero. Coefficients C"j in the second sum-
mation are the sensitivities of the resonant frequency
with respect to changes of the dielectric constant:

C"j ¼
"rj

f

�f

�"rj
ð13Þ

Fig. 3. Typical test cavity for measuring �f.
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The role that individual resonator parts play in the
overall frequency variation with temperature can be
best comprehended with a practical example. The values
are selected to correspond to Murata resonator
DRD293UA13010 intended for operation from 1.82 to
1.97 GHz. It is assumed that all the dimensions and
material properties are known, except for the dielectric
temperature coefficient �". Using (11), the desired coef-
ficient will be computed as follows:

�"p ¼
1

C"p
�C"s�"s �

X3
i¼1

ðCai þ ChiÞ�i þ �f

" #
ð14Þ

The dielectric resonator dimensions and properties
are taken to be:

"rp=36.6, �f=�4 ppm/�C, �p=6 to 7 ppm/
�C,

ap=14.67 mm, hp=13.02 mm.

The conductor cavity is assumed to be made of alu-
minum as follows:

�c=23.12 ppm/
�C, ac=44.02 mm, hc=39.06 mm.

The support is not a solid cylinder as in Fig. 3, but is
made of alumina ceramics Al2O3 of a tubular shape
(inner and outer radii are ais and aos):

ais=3.87 mm, aos=7.91 mm, hs=11.76 mm,
�s=6.4, "r=9.7, �"s=116 ppm/

�C.

Coefficients Cai and Chi can be evaluated with the use
of a numerical procedure for computation of the elec-
tromagnetic field of mode TEo1d inside the test cavity. A
relatively simple program was used for this purpose, as
the only goal of this exercise is to find the orders of
magnitudes involved, and not to actually design a com-
pensated resonator. The program is intended to analyze
a dielectric resonator which is placed on a solid dielec-
tric slab covering the bottom of a cylindrical cavity. The
configuration is shown in Fig. 4. Thus, to apply the
program to the test cavity configuration, the tubular
dielectric support has to be replaced by an equivalent
dielectric slab with an effective dielectric constant lower
than "rs. This is done by taking the effective dielectric
constant to be proportional to the ratio of volumes:

"rseff ¼ 1þ ð"rs � 1Þ
Vs

Va
ð15Þ

Vs is the volume of the tubular spacer:

Vs ¼ a2os � a2is
� �

�hs ð16Þ

and Va is the volume of the active space below the puck:

Va ¼ a2p�hs ð17Þ

For the dimensions given above, the effective relative
dielectric constant of the support comes out to be
"rseff=1.92. The results of numerically evaluating the
sensitivity coefficients by finite differences are shown in
Table 1. Since the tubular support is now replaced by an
equivalent dielectric slab filling the bottom part of the
entire cavity, the coefficient Cas becomes meaningless, so
its value is marked ‘‘ignored.’’ The resonant frequency
evaluated by the program is 1.809 GHz.
When these values are substituted in (14), the desired

value is found to be �"p=�5.9328. On the other hand,
the direct use of (10) yields �"p=�2(6.5–4)=�5.0, a
number that differs by 16%. Such an uncertainty is
unacceptable for design purposes.
The distribution of individual contributions is displayed

in Table 2. The smallest contribution to the measured
value of �"p comes from the expansion of the support �"s.
The reason is that the dielectric resonator is centered in the
cavity, thus the resonant frequency is insensitive to incre-
mental moves from this neutral position. All the other
contributions are larger than 17% of the final result.
The largest two contributions come from �p and from �f

as the approximate Eq. (10) suggests. But the other
contributions, except the contribution from �s, are not
negligible at all.
From the above discussion, it becomes obvious that

using Eq. (10) and the value of �f supplied by the man-
ufacturer yields a totally unreliable value of �". The only

Fig. 4. Simplified model of the test cavity, used in computation of

sensitivity coefficients.

Table 1

Sensitivity coefficients

Puck Support Conductor

Ca �0.6730 Ignored 0.0134

Ch �0.2628 �0.0112 0.0397

C" �0.4894 �0.0041 N/A
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legitimate use of �f is for comparing the temperature
properties of two dielectric resonators made of different
materials. The one which has a more positive value of �f

is the one that has a steeper negative slope �".

4. Conclusions

When the material properties of dielectric resonators
are known with sufficient precision, it is possible to
design temperature-compensated composite resonant
cavities with the temperature stability better than 1 ppm/
�C. The critical material property is �", the temperature
coefficient of the dielectric constant. At present, manu-
facturers of dielectric resonators do not measure this
quantity. Instead, they characterize the temperature
behavior of their materials with a different quantity �f,
the temperature coefficient of the resonant frequency of
a test cavity.
This paper demonstrates that �f is of little help in

designing temperature-stable microwave resonators that
contain dielectric resonators. The paper also reminds the

readers that a straightforward and accurate procedure
for measurement of �" is available. It is hoped that, at
least for higher-priced premium-quality materials, some
manufacturer will begin performing the measurement
and providing the users with reliable values of �".
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Individual contributions to �"p
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From �"s +0.9776 0

From �p �12.4261 �13.0

From �s �0.1463 0

From �c �2.5100 0
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